Kinco® N Series Stepper Motor Driver 3M2280N

User Manual

Version: V1.0

Kinco Electric (Shenzhen) Ltd.

Contents

Chapter 1 Safety Precautions	2
Chapter 2 Product Overview	
2.1 Product Acceptance	
2.2 Product Model Description	
2.3 Product Features	
2.4 Product Functions Describetion	4
2.5 Scope of Application	5
Chapter 3 Product Parameters and Installation	6
3.1 Product Parameters	
3.2 Description of Wiring Terminal	
3.3 Wiring Diagram	
3.4 Time Sequence Diagram of Control Signal	10
3.5 DIP Switch Settings	
3.6 Installation of the Driver	
Chapter 4 FAQ	14
4.1 Indications of Driver Indicators	
4.2 FAQ on the Driver and Stepper Motor	

Release Notes on N Series Multi-functional Micro-step Stepper Motor Driver User Manual

Products involved: 3M2280N stepper motor drivers.

Version: V1.2 Date: Nov. 08. 2013

Revision History					
Version	Date	Description			
V1.0	2010-5-20				
V1.1	2011-10-13				
V1.2	2013-11-08	Use new factory address			

Chapter 1 Safety Precautions

For the sake of personal safety and avoidance of property loss, please read these safety precautions carefully before test running and use of the driver.

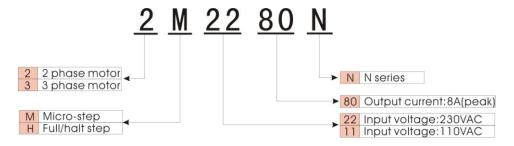
The following safety measures must be strictly followed:

- Read this user manual carefully.
- Observe safety precautions strictly.
- After being powered on, the voltage in side 3M2280N driver is about 300VDC. The
 high voltage still exists 60 seconds after the power supply is cut off. Before
 performing any wiring or check operation, use a multimeter to verify that the voltage
 on the driver terminals is safe; otherwise, the electric shock may occur.
- Never connect wires while the driver and the motor are working; otherwise, the electric shock may occur.
- Do not remove the housing of the driver when the power is on or the driver is working;
 otherwise, the electric shock may occur.
- To avoid personal injury and property loss, only qualified and service-trained personnel can operate the driver.
- Follow related technical specifications and electric installation standards during installation. The driver must be securely grounded with the cross section of the ground cable not less than 1.25 mm².
- Do not insert any object into the driver, which may cause damage to the equipment.
- If any fault occurs to the driver, please return the driver to the maintenance and repair center. Opening the driver without authorization or improper operation may cause damage to the driver. Removing the enclosure of the driver without authorization will void the warranty.
- The waste driver shall be disposed of as industrial waste to avoid environmental pollution.

① Statement:

- When this driver is applied in some mechanical instruments where personal safety is directly involved (e.g. nuclear power control, medical device, truck, train, airplane, amusement and safety devices), be sure to install proper fault-proof devices to avoid the possibility of personal injury.
- Electronic devices are not permanently reliable! Adequate safety measures must be taken to ensure personal and equipment safety in case of a failure. The users must be liable for any loss resulting from equipment fault or misoperation of the driver.

Chapter 2 Product Overview


2.1 Product Acceptance

Upon receiving the product, please check the following items:

- Make sure the driver model is consistent with that ordered.
- Unpack the product and make sure it is free from damage and no part is missing.
- Make sure all set screws in the driver are securely tightened.
- Check the received product against the packing list and contact our customer service center in time if any part is missing.

Packing List						
Article	Qty.					
3M2280N stepper motor drive	1 pcs					
Product Services Directory	1 pcs					
User Manual	1 pcs					
2kΩ resistors	3 pcs					
Length 10mm diameter φ10 insulated terminals	3 pcs					
Length 15mm diameter φ12 insulated terminals	3 pcs					

2.2 Product Model Description

2.3 Product Features

- High performance, low cost, and diversified functions
- Automatic parameter adjustable regulation
- Driver test running function
- Phase memory function
- PLS+DIR and CW/CCW control signal available.
- Optocoupler isolation I/O. There is an ERR signal output.
- Opto-isolation signal input, with pulse response frequency up to 400 KHz
- 12 micro-step value, the maximum micro-step value is 128
- With the protection function of over-voltage, under-voltage, over-current, overheat
- With micro-step smoothing filter, the input pulse can be dynamically smooth and reduce the transient motor sport, motor run more smoothly..

2.4 Product Functions Describetion

3M2280N stepper motor drivers adopt DSP single-chip microcomputer as its control core, which greatly enriches their applications. Meanwhile, the intelligent firmware design frees the users from complicated function setting steps and delivers the optimum performance of the motors easily.

- Motor auto adaptation: The driver can automatically detect the electrical parameters (e.g., inductance and resistance) of the motor connected with the driver, trace the status of motor in real time, and automatically adjust the driver parameters settings according to the detected motor status to deliver the optimum driving performance. If it is not the first time for the driver to drive the motor, please run the driver under no load before connecting the motor. Then, the driver will clear the motor parameters which stored before. Turn off the power, connect the motor, and turn on the power again; the driver will automatically detect the optimum drive parameters for the current motor.
- Phase memory: The driver will keep the phase of the motor in the case of power failure with the motor. Therefore, it prevents the error caused by motor jitter upon power-on on some application occasions. The kept phase will be lost if the motor is replaced or the motor still rotates after the driver stops.
- Half current function: If the half current setting is effective. After the motor stops
 rotation and locks tight, the driver will reduce the phase current of the motor by a half
 in 1.5 seconds. Strongly recommended to use this function!!!
- Test running: If the driver is set to this status, it will automatically drive the motor at a speed of 60RPM. At this time, the output current is the set value and the subdivision setting becomes invalid. This function is used to check whether the driver status is normal.
- PLS+DIR and CW/CCW compatible input: The control signal input port of the driver supports "PLS + DIR" control signal and "CW/CCW" control signal input.
- Over-voltage alarm: The driver will generate a high-voltage alarm if the internal bus
 voltage exceeds 395 VDC. At this time, turn off the power supply in time and reboot
 the driver to clear the alarm. If the over-voltage alarm occurs frequently, it is
 recommended that the input voltage be tuned down or a driver with absorption function
 be adopted.
- Short circuit alarm: The driver will activate the short circuit protection function in the
 case of short-circuit or wrong wiring of the motor or driver, so as to prevent the
 damage to the driver. In this case, turn off the power supply in time and check the
 wiring of the motor. To clear the alarm, reboot the driver.
- Under-voltage alarm: The driver will generate a low-voltage alarm if the internal bus voltage goes below 200 VDC in the case of the 2M2280N driver or 90VDC in the case

of the 2M1180N driver. To clear the alarm, reboot the driver.

- **Overheat alarm:** The driver will generate a overheat alarm if the internal temperature reaches 75°C.
- Miss-connection protection: The driver will generate a miss-connect alarm if the wiring between the driver and the motor is wrong. To clear the alarm, reconnect the wires correctly.

2.5 Scope of Application

The drivers are applicable to various large and medium automation equipment and instruments, including engraving machines, labeling machines, cutting machines, numerical control machine tools, and plotters. They are ideal choices for users in search of low vibration, low noise and high accuracy.

To achieve the optimum performance, KINCO 110 and 130 series stepper motors are recommended.

Chapter 3 Product Parameters and Installation

3.1 Product Parameters

Please learn carefully the driver parameters before use. Make sure the power supply and operating environment conform to relevant requirements.

Table 1 Electrical Specifications

Parameter	Description				
Input voltage	3M2280N: Single-phase 220V AC +/-15%				
input voitage	(50Hz)(187VAC~253VAC)				
Phase current(peak,					
unit: A)	2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6, 6.4, 6.8, 7.2, 7.6 8.0				
Micro step(unit:	400, 500, 600, 800, 1000, 1200, 1500, 2000, 3000, 4000, 5000,				
pulse/rev)	6000, 10000, 20000				
	Three control signal ports: PLS(CW)/DIR(CCW)/FRE; current				
Input signal	range: 6 ~16 mA				
Control signal					
input method	PLS+DIR; CW/CCW				
Output signal	ERR, open collector output, max current: 10 mA.				
Protection	Over-voltage, under-voltage, short circuit, and overheat protection				
Absorbing	Need customize, used to absorb the energy feed back by the				
circuit*	motor				

Table 2 Operating Environment

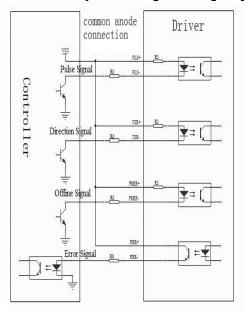
Cooling metho	d	Forced air cooling		
	Operation	Avoid the environment with great amount of		
	environment	metallic powder, oil mist, or erosive gases.		
Environment	Operation humidity	<85%, RH (non-condensing or water drops)		
Environment	Operation	0°C ~ +40°C		
	temperature	0 0 ~ +40 0		
	Storage temperature	-20°C ~ +70°C		
Weight (net)		1.5Kg		
Dimensions		201mm×147mm×66mm		
Ingress protect	tion	IP20		

3.2 Description of Wiring Terminal

Wiring terminals of the driver are divided into three types: control signal port, motor power cable port, and power input port. Control signal port can receive differential signal, single-ended common-cathode and common-anode signals, and can prevent the interference of ambient environment on the driver with the built-in high-speed optocoupler. The twisted pairs are recommended as signal lines for enhanced interference immunity in environments with strong electromagnetic interference. The definitions of the driver ports are detailed below:

Table 3 Definition of Control Signal Port

	Table 3 Definition of Control Signal Fort
Signal	Functional Description
PLS+(CW+)	Pulse signal. In the PLS+DIR control signal mode, the signal is the pulse control signal and the rising edge is effective.
DI 0 (0)4()	In the CW/CCW control signal mode, the signal is the forward rotation
PLS-(CW-)	control signal and the rising edge is effective. The high-level time shall
	not be less than 1.25uS to ensure reliable response of the internal
	optocoupler.
	The maximum input frequency of the pulse signal is 400 KHz
DIR+(CCW+)	In the PLS+DIR control signal mode, the signal is direction control
	signal, and the driver sets the rotation direction of the motor by
DIR-(CCW-)	detecting the level of this signal. The signal value of the effective
Dire-(CCVV-)	moment in the rising edge of pulse signal. In the CW/CCW control signal mode, the signal is the reverse rotation
	control signal and the rising edge is effective. To ensure reliable
	response of the internal optocoupler, the high-level time in this mode
	shall not be less than 1.25uS.
	The maximum input frequency of the pulse signal is 400 KHz
FREE+	This signal is offline signal. If the signal is at a high level, the driver
	turns off the power supply for the motor, and the motor rotor turns into
	Free status (Offline). Adequate measures must be adopted to prevent
FREE-	the motor from causing equipment damage or personal injury when it is in the offline status.
ERR+	Alarm output signal. This signal port is the optocoupler output port for
LICICI	open collector. When the driver has an exception alarm or power
	failure alarm, this signal port have not outputs ((level determined by the
ERR-	external circuit).
	For this port, the maximum allowable input voltage is 30V DC and the
	maximum supply current is 10 mA.


Table 4 Definition of Strong Current Port

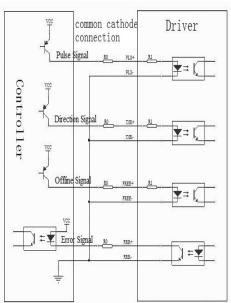
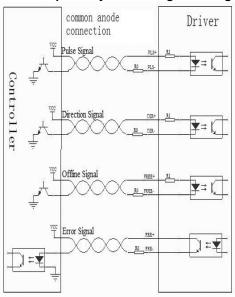
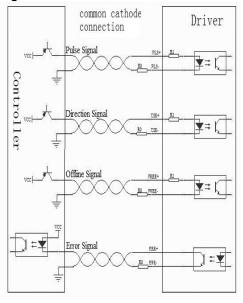

Signal	Functional Description
A+	Phase A of motor. The switching between A+ and A- can change motor
A-	rotation direction.
B+	Phase B of motor. The switching between B+ and B- can change motor
B-	rotation direction.
R+	Absorbing (Break) resistor port.
R-	

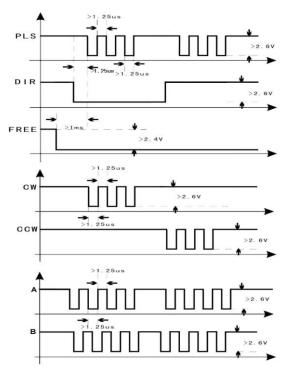
Table 5 Definition of Power Input Port


ACN+	Power input ports for the driver.
ACL-	
PE	Grounding terminal of the driver


3.3 Wiring Diagram General Way Control Signal Wiring Diagram

Twisted-pair Way Control Signal Wiring Diagram

- The input circuits of all control signals of the driver have been reliably isolated through
- optocoupler elements, which minimize the interference from external electrical noises.
- In the figure, R0 is an external current limit resistor used to curb the input signal current of the driver. When control signal is at 24VDC, a 2K resistor can be connected; when the control signal is at 12VDC, a 1K resistor can be connected. The current at the input port of the driver must be within 6~16 mA; otherwise, it may cause damage to the equipment.
- ERR signal is open collector output and requires an external power supply. The
 maximum external voltage cannot exceed 30V. Never connect the ERR signal port in
 reversed polarity; otherwise, it may cause damage to the port.
- If driver work in a strong interference field, the control signal wiring is recommended twisted-pair way, this can reduce the interference signal source interfere control signal.


3.4 Time Sequence Diagram of Control Signal

Precautions on Control Signal:

- 1. The maximum frequency of the input pulse is 400 KHz.
- 2. Disable direction signal change during pulse signal rise time.
- 3. A free signal shall be set up 1ms earlier than a pulse signal.

Precautions on Wiring:

To avoid interference on 1. the driver. the strong current cables (phase wires and power cables of the driver) shall be isolated from the weak current cables (for a distance of at least 10cm) when connecting wires for the driver.

- 2. It is recommended that the twisted pairs be adopted for control signal cables for the driver, and the shielding layer be grounded reliably (to the true ground of the driver and equipment).
- 3. Due to endurance of heavy current, conductors with cross-section no less than 1.5mm² are recommended for the motor cabling, or even thicker ones as appropriate. Motor cabling put insulated terminals ,it can reduce the contact resistance between motor and driver.
- 4. It is strictly forbidden to connect wires while the power is on; otherwise, it may cause equipment damage and personal injury. Please note that the power line of the motor still carries heavy current even if the motor is in the locked status. Pull out or connect the wire forcibly may cause equipment damage and personal injury.
- 5. The length of bare wires at the inputs of the power line of the motor and the power input cable of the driver shall be around 10mm; it may result in poor contact if the length is too short and may cause electric shock if the length is too long.

3.5 DIP Switch Settings

The driver is configured with two round DIP switches S1 and S2, which are used for micro-step value selection, current value selection and functions selection.

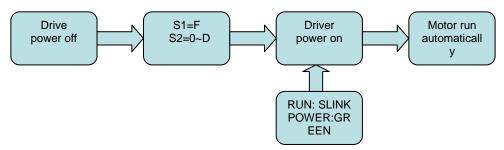
S1, Micro-step:

S1	0	1	2	3	4	5	6	7
Pulse/rev	400	500	600	800	1000	1200	1500	2000
S1	8	9	Α	В	С	D	Е	F
Pulse/rev	3000	4000	5000	6000	10000	20000	SET1	SET2

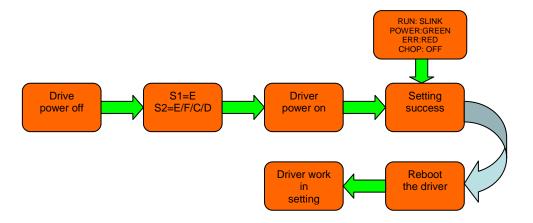
S2, Current:

S2	0	1	2	3	4	5	6	7
Peak(A)	2.80	3.20	3.60	4.00	4.40	4.80	5.20	5.60
Rms(A)	1.98	2.26	2.55	2.83	3.11	3.39	3.68	3.96
S2	8	9	Α	В	С	D	Е	F
Peak(A)	6.00	6.40	6.80	7.20	7.60	8.00	N 4 4	MO
Rms(A)	4.24	4.53	4.81	5.09	5.37	5.66	M1	M2

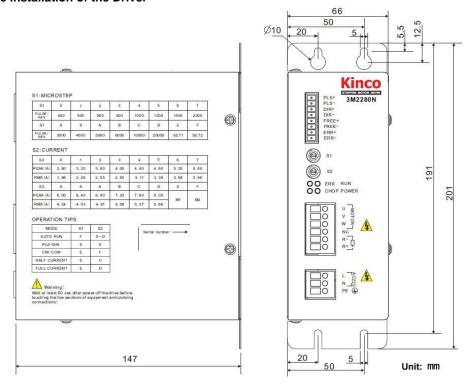
OPERATION TABLE:


MODE	S1	S2	METHOD
Auto Run	F	0~D	Set the s1&s2 as S1=F,S2=0~D when driver is power
			off, then power on the driver, the motor will run
			automatically.
PLS+DIR	E	Е	Set S1 and S2 as the "MODE settings (as the left
CW/CCW	Е	F	table)" when driver is power off, then power on the
HALF	Е	С	driver, the 4 standards LED will run as: , this means
CURRENT			the mode setting is success, then reboot the driver,
FULL	Е	D	the driver will work in setting mode.
CURRENT			

Precautions on rotary switch:


- S1 cannot be set to NA; otherwise, the driver will generate an alarm. In this case, turn
 off the power, re-set the micro-step values, and turn on the power again to resume
 normal.
- 2. To set the status of the DIP switch, choose an appropriate straight screwdriver; a screwdriver of inappropriate size may cause damage to the DIP switch.
- 3. When setting the status of the DIP switch, do not apply an axial force; otherwise, it may cause damage to the DIP switch.

Setting flow chart:


1. Auto Run setting flow

2. Function setting flow

3.6 Installation of the Driver

Mechanical Dimensions

Precautions on Installation:

- It is recommended that the driver be mounted on a side and kept in an upright position, so as to maintain a well ventilated installation environment. Never block or cover the air vents of the driver; otherwise, the normal use of the driver may be prevented by possible frequent overheat alarms.
- For better heat dissipation, two drivers shall be installed at a clearance of at least 50mm.
- With an ingress protection class of IP20, the driver shall be installed in an 1. industry-compliant indoor switching cabinet; failure to do so may cause damage to the driver or personal injury.
- Enhanced heat dissipation is required if the driver generates overheat alarms frequently. A fan may be installed in a position close to the driver for forced cooling and heat dissipation, so as to ensure the driver works in an allowable temperature range.

Chapter 4 FAQ

4.1 Indications of Driver Indicators

N series stepper motor drivers are equipped with complete protection circuits to protect their safety to the greatest extent possible. In addition, the rich indications of indicators help the user to learn the working status of the driver in time.

Indications of Indicators:

Alarm		Ind	icator	Motor Status	
Alaim	Power	Run	Error	Chop	Wold Status
Internal power failure	Off	Off	Off	Off	The motor power supply disconnects and the motor shaft releases
Single-chip microcomputer resetting	On	On	On	On	The motor power supply disconnects and the motor shaft releases
Hardware error	On	Off	On	On	The motor power supply disconnects and the motor shaft releases
Motor phase-to-phase error	On	Off	On	Blink quickly	The motor power supply disconnects and the motor shaft releases
Over-current alarm	On	Off	Blink quickly	Off	The motor power supply disconnects and the motor shaft releases
Over-voltage alarm	On	Off	Blink quickly	Blink quickly	The motor power supply disconnects and the motor shaft releases
Overheat alarm	On	Off	Blink slowly	Off	The motor power supply disconnects and the motor shaft releases
Under-voltage alarm	On	Off	On	Off	The motor power supply disconnects and the motor shaft releases
DIP switch error	On	Blink slowly	On	Off	The motor power supply disconnects and the motor shaft releases
Motor cable not connected	On	Off	On	Blink slowly	The motor power supply disconnects and the motor shaft releases
Normal running	On	On	Off	Off	The motor runs normally
Test running	On	Blink slowly	Off	Off	The motor runs normally
Braking	On	On	Off	On	The motor runs normally

🛕 Note:

- Blinking slowly means blinking at a frequency of 0.5 Hz, and blinking quickly means blinking at a frequency of 5Hz.
- To clear any alarm of the driver, it is necessary to disconnect the power supply and then reboot the driver.
- In the case of any alarm, it is necessary to cut the power supply off in time, and never touch the driver and motor when the power supply of the driver is on.
- Except for the normal running, test running, and absorbing status, the driver ERR signal will output a low level.
- If any indication not covered in the above table occurs, please contact our customer service personnel.

4.2 FAQ on the Driver and Stepper Motor

1. What is the maximum allowable surface temperature for a stepper motor?

The excessively high temperature will demagnetize the magnetic materials of a stepper motor and as a result, cause lower torque or out of step of the motor. Therefore, the maximum allowable surface temperature of a stepper motor depends on the demagnetization point of different magnetic materials. In general, the demagnetization point for magnetic materials is above 130°C, so it is normal if the surface temperature of a stepper motor remains at 80°C - 90°C.

2. How to calculate output power of a stepper motor?

The output power of a stepper motor varies with the rotation speed and is generally measured by torque. The calculation formula for output power of a stepper motor is: $P=\omega*M$; where, $\omega=2\pi*\pi/60$, ω ndicates the angular speed and M indicates the output torque.

3. What is the subdivision function of the driver intended for?

The subdivision function of a stepper motor driver is a kind of electronic damping technology. It has three distinctive functions:

- A. It enhances the control accuracy due to the subdivision of step angles.
- B. Subdivision is the best method to suppress the low-frequency oscillation of the motor.
- C. It can enhance the motor torque to some exten.

Kinco Electric (Shenzhen) Ltd.

Address: Building 1, No.6 Langshan 1st Rd, Hi-tech Park North, Nanshan, Shenzhen,

China. 518057

Tel: 86-755-2658555 Fax: 86-755-26616372 http://www.kinco.cn Email: sales@kinco.cn